Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

On considère la fonction f définie sur R par: f(x)= -x^3 + 2x² + 4x

1) Calculer la dérivée f '(x)

2) Etudier le signe de f '(x) suivant les valeurs de x.

3) Dresser le tableau des variations de la fonction f

4) En quels points la courbe Cf admet-elle une tangente horizontale? Pourquoi?

5) Ecrire une équation de la droite Ta tangente à la courbe au point A d'abscisse 3

6) Calculer les abscisses des points d'intersection de la courbe Cf avec l'axe des abscisses.

7) Construire la courbe Cf dans la fenêtre graphique:{-2<x<3,5  

                                                                                                {-5<y<10     unité 2 cm sur (Ox) et 1 cm sur (Oy)

Placer la tangente Ta, les tangentes horizontales, et les points importants déterminés dans les questions précédentes.



Sagot :

f' vaut -3x^2+4x+4 fonction qui est nulle en (-4+8)/(-6) ou -2/3 et (-4-8)/(-6) ou 2, positive entre ces deux valeurs et négative ailleurs

 

x    -inf                      -2/3                    2                      +inf

=========================================

f     +inf        décroit               croit               décroit     -inf

 

Tangentes horizontales en x=-2/3 et x=2

 

Ta : f(3)=-27+18+12=3 f'(3)=-27+12+4=-11  equation y=3-11(x-3) ou y=-11x+36

 

Cf coupe Ox quand f(x)=-x(x^2-2x-4)=0 soit en x=0 , x=1+V5 et x=1-V5

 

Geogebra est ton ami.

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.