Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour tout le monde voici encoree un exercice que je ne comprend pas de ma spé math en première, vraiment je ne sais pas du tout quoi répondre etc

Si vous pouvez m'aider ce serai vraiment tellement genialll je ne vous remercierai jamais assez


Bonjour Tout Le Monde Voici Encoree Un Exercice Que Je Ne Comprend Pas De Ma Spé Math En Première Vraiment Je Ne Sais Pas Du Tout Quoi Répondre Etc Si Vous Pouv class=

Sagot :

Réponse :

Bonjour

Explications étape par étape :

1)

14/99=0.14141414...

Donc je crois comprendre que :

a1=1

a2=4

a3=1

a2-a1=3 et a3-a2=-3 : pas constant

a2/a1=4/1=4 et a3/a2=1/4 : pas constant.

Ni arithmétique ni géométrique.

2)

b(n+1)=b(n) x 3

b(n+1)/b(n)=3

qui prouve que la suite (b(n)) est une suite géométrique de raison q=3 et de 1er terme b(1)=3.

3)

c(n+1)/c(n)=5

qui prouve que la suite (c(n)) est une suite géométrique de raison q=5 et de 1er terme c(0)=2.

4)

d(n+1)=-4^(n+1)

d(n+1)=-4^n*4=d(n)*4

d(n+1)/d(n)=4

qui prouve que la suite (d(n)) est une suite géométrique de raison q=4 et de 1er terme d(1)=-4^1=-4

5)

e(n+1)=(n+1)/3 + 1=n/3 + 1/3 + 1=n/3+1 + 1/3 =e(n) +1/3

e(n+1)-e(n)=1/3

qui prouve que la suite (e(n)) est une suite arithmétique  de raison r=1/3 et de 1er terme e(1)=1/3+1=4/3.

6)

f(0)=2

f(1)=1-2=-1

f(2)=1-(-1)=2

f(1)-f(0)=-1-2=-3 et f(2)-f(1)=2-(-1)=3 : pas constant.

f(1)/f(0)=-1/2 et f(2)/f(1)=2/-1=-2 : pas constant.

Ni arithmétique ni géométrique.

2ème partie :

w(n)=(3 x 2^n -4n+3 +3 x 2^n + 4n - 3)/2

w(n)=(3 x 2^n + 3 x 2^n)/2

w(n)=[2^n x (3+3)]/2

w(n)=3 x 2^n

Donc :

w(n+1)=3 x 2^(n+1)

w(n+1)=3 x 2^n x 2 soit :

w(n+1)=w(n) x 2 qui donne :

w(n+1)/w(n)=2

qui prouve que la suite (w(n)) est une suite géométrique de raison q=2 et de 1er terme w(1)=3 x 2^1=6.

Sens de variation :

w(n+1)-w(n)=3 x 2^(n+1) - 3 x 2^n=3 x  2^n x  2 - 3 x 2^n

w(n+1)-w(n)=3 x 2^n x (2-1)

w(n+1)-w(n)=3 x  2^n qui est > 0.

Donc :

w(n+1)-w(n) > 0

Donc :

w(n+1) > w(n)

Suite croissante.

On ne voit pas lae 2).

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.