Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, voici un exercice de maths que j'aimerais bien comprendre.

Enoncé :
h(x) =[tex]2\sqrt{5x+1}[/tex] pour tout x ∈]− 0.2 ; +∞[
Ch est la courbe respective de h(x).
Question:
1. Démontrer que h’(x) = [tex]\frac{5}{\sqrt{5x+1} }[/tex]
On détaillera les calculs et on rappellera la formule utilisée.
2. La courbe Ch possède-t-elle des tangentes horizontales ? Justifier la réponse.
3.
a) Calculer h′(0) puis f′(0).
b) Que peut-on en déduire pour les courbes Cf, Cg et Ch au point d’abscisse 0 ? Justifier la réponse.

Merci pour vos réponses ! Bonne Journée !


Sagot :

Réponse :

Explications étape par étape :

Bonjour

h est une fonction dérivable sur ]− 0.2 ; +∞[

h(x) est de la forme √(u(x)) et la formule de dérivée de √(u(x))  est

u'(x)/(2√u(x))

h(x) = 2√(5x + 1)

posons u(x) = (5x + 1)

u'(x) = 5

en appliquant la formule sur la dérivée de √u(x) on a donc sa dérivée qui vaut

           

u'(x)/(2√u(x)) = 5 /(2√(5x + 1) )

ainsi h'(x) = 2× 5 /(2√(5x + 1) )

donc h'(x) = 5/ √(5x + 1)

h'(x) est strictement positve sur ]− 0.2 ; +∞[ donc elle ne possède pas pas de tangentes horizontales

h'(0) = 5/ √(5(0) + 1)

h'(0) = 5/ √(1)

h'(0) = 5

Je ne peux pas aller plus loin dans ma réponse je ne connais pas f(x) ni g(x) ni leur courbes respectives

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.