Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, j’ai cet exercice dans mon dm sur le paradoxe de Zénon d’élée. Il concerne les suites et les limites. Merci en avance pour votre aide.

Bonjour Jai Cet Exercice Dans Mon Dm Sur Le Paradoxe De Zénon Délée Il Concerne Les Suites Et Les Limites Merci En Avance Pour Votre Aide class=

Sagot :

Bonjour :))

  • Question 1

[tex](U_n)\ d\'efinie\ sur\ \mathbb N\ par:\ U_n=\frac{1}{2^{n}}\\\\\frac{U_{n+1}}{U_n}=\frac{\frac{1}{2^{n+1}}}{\frac{1}{2^{n}}}=\frac{2^{n}}{2{n+1}}=\frac{2^{n}}{2*2^{n}}=\frac{1}{2}\\\\(U_n)\ est\ une\ suite\ g\'eom\'etrique\ de\ raison\ q=\frac{1}{2}\ et\ de\ premier\ terme\\U_0=\frac{1}{2^{0}}=1\\\\Donc\ U_n=1*(\frac{1}{2})^{n}[/tex]

  • Question 2, a)

[tex]Pour\ une\ suite\ g\'eom\'etrique\ on\ a:\\1+q+q^{2}+...+q^{n}=\frac{1-q^{n+1}}{1-q}\\\\Ici,\ on\ a:1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{n-1}} = 1 + q + q^{2}+q^{n-1}\\\Leftrightarrow \frac{1-q^{n}}{1-q}[/tex]

  • Question 2, b)

[tex]S_n=50*(1+\frac{1}{2}+\frac{1}{2^{2}}+...+\frac{1}{2^{n-1}})\\\\\boxed{S_n=50*\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}}[/tex]

  • Question 3

[tex]RAPPEL:\lim_{n \to \infty} q^{n}=0\ \ \ si\ 0<q<1\\\\ \lim_{n \to \infty} S_n=50*\frac{1-0}{1-\frac{1}{2}}=50*2=100[/tex]

  • Question 4

[tex]La\ limite\ d'une\ suite\ finie\ pr\'ecise\ que\ la\ suite\ se\ rapproche\ de\ la\ valeur\\ finie\ quand\ n\ devient\ de\ plus\ en\ plus\ grand\ sans\ jamais\ atteindre\\cette\ valeur\ finie.\\\\On\ v\'erifie\ donc\ le\ paradoxe\ de\ Zenon\ El\'ee.[/tex]

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.