Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
Réponse :
1) construire les points M et N définis par :
vec(AM) = 3/2vec(AB) et vec(AN) = 3vec(AD)
N/
/
/
D /.............I.............. C
/ /
A /............................../B.............. M
2) démontrer que : vec(MN) = - 3/2vec(AB) + 3vec(AD)
vec(MN) = vec(MA) + vec(AN) d'après la relation de Chasles
= - vec(AM) + vec(AN)
= - 3/2vec(AB) + 3vec(AD)
et démontrer que : vec(BI) = - 1/2vec(AB) + vec(AD)
vec(BI) = vec(BC) + vec(CI) relation de Chasles
or vec(BC) = vec(AD) (ABCD parallélogramme)
vec(CI) = - vec(IC) = - 1/2vec(DC) (I milieu de (DC))
or vec(DC) = vec(AB) (ABCD parallélogramme)
donc vec(BI) = vec(AD) - 1/2vec(AB)
b) démontrer que les droites (MN) et (BI) sont parallèles
vec(MN) = - 3/2vec(AB) + 3vec(AD)
vec(BI) = - 1/2vec(AB) + vec(AD)
vec(MN) = - 3/2vec(AB) + 3vec(AD)
= 3(- 1/2vec(AB) + vec(AD))
= 3vec(BI)
donc vec(MN) = 3vec(BI) ⇒ les vecteurs MN et BI sont colinéaires
par conséquent, les droites (MN) et (BI) sont parallèles
3)
a) exprimer les vecteurs CM et CN en fonction des vecteurs AB et AD
vec(CM) = vec(CB) + vec(BM) relation de Chasles
vec(CB) = - vec(BC) = - vec(AD)
vec(AM) = vec(AB) + vec(BM) donc vec(BM) = vec(AM) - vec(AB)
vec(BM) = 3/2vec(AB) - vec(AB) = 1/2vec(AB)
donc vec(CM) = 1/2vec(AB) - vec(AD)
vec(CN) = vec(CD) + vec(DN)
vec(CD) = - vec(DC) = - vec(AB)
vec(AN) = vec(AD) + vec(DN) donc vec(DN) = vec(AN) - vec(AD)
vec(DN) = 3vec(AD) - vec(AD) = 2vec(AD)
donc vec(CN) = - vec(AB) + 2vec(AD)
vec(CM) = 1/2vec(AB) - vec(AD)
= 1/2(vec(AB) - 2vec(AD)) ⇒ 2vec(CM) = vec(AB) - 2vec(AD)
vec(CN) = - vec(AB) + 2vec(AD)
= -(vec(AB) - 2vec(AD)) ⇒ - vec(CN) = vec(AB) - 2vec(AD)
- vec(CN) = 2vec(CM) ⇒ vec(CN) = - 2vec(CM)
les vecteurs CM et CN sont colinéaires ⇒ les points C, M et N sont alignés
Explications étape par étape :
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.