Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Notre plateforme vous connecte à des professionnels prêts à fournir des réponses précises à toutes vos questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Besoin d’aide pour un exo en maths svp niveau 1ere

Besoin Daide Pour Un Exo En Maths Svp Niveau 1ere class=

Sagot :

Réponse :

Explications étape par étape :

Pour dérivée, il faut connaitre pas mal de formules, dans ces exercices on a des dérivées du type u * v (avec u et v des fonctions), u ° v (formules de fonctions composés) et d'autres plus classiques (comme k*x (avec k un nombre réel) ).

f(x) = [tex]\sqrt{3} x^{2}[/tex] - πx + [tex]\frac{1}{3}[/tex]

L'ensemble de définition de f est R, f est dérivable sur R et pour tout x appartenant à R

Je vais détaille pas mal cette dérivée puis je détaillerais que les calculs important

f'(x) = ([tex]\sqrt{3} x^{2}[/tex] )' - (πx)' + ([tex]\frac{1}{3}[/tex])'

f'(x) = [tex]2\sqrt{3} x[/tex] - π + 0

f'(x) = [tex]2\sqrt{3} x[/tex] - π

/ dérivée de [tex]x^{2}[/tex] = 2x, k*x = k et k = 0 (avec k∈R) /

g(x) = (2[tex]x^{2}[/tex] - x + 1)(-7x + 8)

g est de la forme u * v donc on va utiliser la formule (u*v)'= u'v + uv'

g'(x) = (4x - 1)(-7x + 8) + (2[tex]x^{2}[/tex] - x + 1)(-7)

g'(x) = -28[tex]x^{2}[/tex] + 32x + 7x - 8 - 14[tex]x^{2}[/tex] + 7x - 7     (On développe)      

g'(x) = -42[tex]x^{2}[/tex] + 46x - 15                                   (On réduit)

h(x) = [tex]\frac{-8}{x^{2}+5}[/tex]

h est de la forme u / v donc on va utiliser la formule (u/v)'=  [tex]\frac{u'v - uv'}{v^{2}}[/tex]

L'ensemble de définition de g est R (car [tex]x^{2} + 5[/tex] ne peut pas être nul), g est dérivable sur R et pour tout x appartenant à R

h'(x) = [tex]\frac{0(x^{2} + 5) - (-8)(2x + 0)}{(x^{2} +5)^{2} }[/tex]

h'(x) = [tex]\frac{16x}{(x^{2} +5)^{2} }[/tex]

g(x) = [tex]\frac{x^{2}+3x - 7}{x+5}[/tex]

L'ensemble de définition de g est R\{-5} (car [tex]x + 5[/tex] est nul quand x = -5), g est dérivable sur R\{-5} et pour tout x appartenant à R\{-5}

g est de la forme u / v donc on va utiliser la formule (u/v)'=  [tex]\frac{u'v - uv'}{v^{2}}[/tex]

g'(x) = [tex]\frac{(2x +3)(x+5) - (x^{2} +3x - 7)(1 + 0)}{(x+5)^{2} }[/tex]

g'(x) = [tex]\frac{2x^{2} + 10x + 3x + 15 - x^{2} - 3x +7}{(x+5)^{2} }[/tex]

g'(x) = [tex]\frac{x^{2}+10x+22}{(x+5)^{2} }[/tex]

i(x) = [tex]\sqrt{2x^{4} + 5}[/tex]

i est de la forme [tex]\sqrt{u}[/tex] et ([tex]\sqrt{u}[/tex] )' = [tex]\frac{u'}{2\sqrt{u} }[/tex]

L'ensemble de définition de i est R (car [tex]2x^{4} + 5[/tex] est toujours positif), g est dérivable sur R et pour tout x appartenant à R

i'(x) = [tex]\frac{8x^{3} }{2\sqrt{2x^{4} + 5 } }[/tex]

i'(x) = [tex]\frac{4x^{3} }{\sqrt{2x^{4} + 5 } }[/tex]

j(x) = [tex]2x(3x +1)^{5}[/tex]

j est de la forme u * v et a un des facteurs de la forme [tex]u^{n}[/tex]et

([tex]u^{n}[/tex])' = n * u' * [tex]u^{n-1}[/tex]

L'ensemble de définition de j est R (car n∈Z et n>0), g est dérivable sur R et pour tout x appartenant à R

j'(x) = [tex]2(3x+1)^{5} + 2x(5 * 3 * (3x + 1)^{4} )[/tex]

j'(x) = [tex]2(3x+1)^{5} + 2x(15(3x + 1)^{4} )[/tex]

j'(x) = [tex]2(3x+1)^{5} + 30x(3x + 1)^{4}[/tex]

j'(x) = 2([tex](3x+1)^{5} + 15x(3x + 1)^{4}[/tex])

voila voila

Bonne soirée

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.