Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Dans un repère orthonormé on considère les points A(–2 ; 0), B(3 ; –1), C(5 ; 4) et D(0 ; 5).• Montrer que le quadrilatère ABCD est un parallélogramme

Aidez moi s’il vous plaît, merci d’avance.


Dans Un Repère Orthonormé On Considère Les Points A2 0 B3 1 C5 4 Et D0 5 Montrer Que Le Quadrilatère ABCD Est Un Parallélogramme Aidez Moi Sil Vous Plaît Merci class=

Sagot :

Réponse :

Bonjour, place les points A,B,C,D sur un repère  orthonormé pour vérifier.

Explications étape par étape :

ABCD est un parallélogramme si deux côtés opposés sont // et de même longueur donc s'ils constituent deux vecteurs égaux

Vérifions si vecAB=vecDC  deux vecteurs sont égaux s'ils ont les même coordonnées

vecAB:    xAB=xB-xA=3-(-2)=5   et yAB=yB-yA=-1-0=-1   vec AB(5;-1)

vecDC   xDC=xC-xD=5-0=5      et yDC=yC-yD=4-5=-1    vecDC(5;-1)

Ces deux vecteurs sont égaux comme ils ne sont pas portés par la même droite (les points A,B,C,D ne sont pas alignés) le quadrilatère non croisé ABCD est un parallélogramme.

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.