Answered

Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

bonjour je suis en ssi  et j'aurais besoins d'aide svp  pour cet exo sur les dérivées c'est assez urgent !!!   une entreprise fabrique des casseroles de contenance 5L en utilisant le moins de métal possible x désigne le rayon du disque intérieur et H la hauteur de la casserole en centimetre
a) exprimer h en fonction de x.
b) on note S(x) la somme de l'aire latérale et de l'aire du disque intérieur en cm². démontrer que S(x)= pi x² + 10000/x
c) étudier les variations de la fonction S ]0; + infini[
d) déterminer une valeur approchée de x au mm prés pour laquelle la quantité de métale utilisée est minimal.


Sagot :

je suppose que c'est une casserole cylindrique.

 

a) volume = pix².h = 5000cm³ => h = 5000/pix²

b) aire latérale = 2pirh = 2pi.x.5000/pix² = 10000/x

    aire totale (sans couvercle) = pix² +10000/x

c) dérivée : 2pi.x - 10000/x² = (2pix³ -10000)/x²   racine = racine cubique (5000/pi) = 11,675

      x   0                              11,6                          infini

  f'(x)                      -               0                +

  f(x)                      \                                  /

le métal utilisé sera minimal pour un rayon de 11,6 cm

 

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.