Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour quelqu'un pourrait m'aider svp pour mon devoir de maths ?
Je n'arrive pas à trouver le bon résultat. merci d'avance.

Soit la fonction f définie par:
f(x) =
[tex]x + \frac{1}{x} [/tex]

1. Montrer que f'(x) est du signe de
[tex]x {}^{2} - 1[/tex]
2. En déduire le signe de f'

3. En déduire le tableau de variation de f.


Sagot :

Réponse :

f(x) = x  + 1/x      Df = R*

1) montrer que f '(x) est du signe de x² - 1

f est une fonction somme dérivable sur Df ' = R*  et sa dérivée f ' est :

    f '(x) = 1 - 1/x²  ⇔ f '(x) = (x² - 1)/x²      or  x² > 0

donc le signe de f '(x)  est du signe de  x² - 1

2) en déduire le signe de f '

    x    - ∞            - 1                 1                 + ∞    

 f '(x)           +        0       -        0         +

3) en déduire le tableau de variation de f

     x    - ∞                     - 1                    0                    1                     + ∞

   f(x)   - ∞→→→→→→→→→ - 2→→→→→→ - ∞||+∞→→→→→→→ 2→→→→→→→→→ + ∞

                 croissante      décroissante  décroissante    croissante      

Explications étape par étape :

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.