Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

bonjour pouvez vous m'aider svp



1°) On dit qu'un nombre entier est parfait s'il est égal à la moitié de la somme de ses diviseurs. Les nombres 6 et 28 sont-ils des nombres parfaits ? Justifier. 2°) Rémi lit la phrase suivante dans une revue : « La somme de trois nombres entiers consécutifs est toujours un multiple de 3. >> a) Tester cette affirmation avec plusieurs valeurs. b) Démontrer cette affirmation (on pourra nommer n le plus petit des trois nombres)​


Sagot :

OzYta

Bonsoir,

1)

Les diviseurs de 6 sont 1, 2, 3 et 6.

En les additionnant, on obtient :

1 + 2 + 3 + 6 = 12

On divise par 2 : 12/2 = 6

Ainsi, d'après ce qui est dit dans l'énoncé, 6 est un nombre parfait.

Les diviseurs de 28 sont 1, 2, 4, 7, 14 et 28.

En les additionnant, on obtient :

1 + 2 + 4 + 7 + 14 + 28 = 56

On divise par 2 : 56/2 = 28

Ainsi, d'après ce qui est dit dans l'énoncé, 28 est un nombre parfait.

2) a) Prenons 3 entiers consécutifs : 1, 2 et 3.

En les additionnant, on obtient : 1 + 2 + 3 = 6 qui est un multiple de 3.

A toi de faire un ou deux autres exemples :)

b) Appelons [tex]n[/tex] un nombre entier. Alors, [tex]n+1[/tex] est le nombre qui suit [tex]n[/tex] et [tex]n+2[/tex] est le nombre qui suit [tex]n+1[/tex]. Il s'agit donc de trois entiers consécutifs.

En les additionnant, on obtient :

[tex]n+n+1+n+2\\=3n+3\\=3(n+1)[/tex]

Ainsi, quelque soit le nombre choisit au début, la somme de trois entiers consécutifs est un multiple de 3.

En espérant t'avoir aidé.

View image OzYta
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.