Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour pouvez vous m'aider svpp le 121 Calculer f’(x) est préciser l’ensemble de définition de f et celui de f​

Bonjour Pouvez Vous Maider Svpp Le 121 Calculer Fx Est Préciser Lensemble De Définition De F Et Celui De F class=

Sagot :

Tenurf

Bonjour,

[tex]\sqrt{x}[/tex] est définie pour [tex]x\geq 0[/tex]

et dérivable pour x>0

121. la fonction f est définie sur IR+ et dérivable pour x>0 car produit de fonctions qui le sont.

La dérivée d'un produit est

[tex](uv)'=u'v+uv'[/tex]

donc pour x>0

[tex]f'(x)=2x(1+\sqrt{x})+(x^2+1)*(\dfrac{1}{2\sqrt{x}})\\\\=\dfrac{4x\sqrt{x}+4x^2+x^2+1}{2\sqrt{x}}\\\\=\dfrac{4x\sqrt{x}+5x^2+1}{2\sqrt{x}}\\\\=2x+\dfrac{5x^2+1}{2\sqrt{x}}\\\\[/tex]

126

la fonction f est définie sur IR+ et dérivable pour x>0

Nous savons du cours que

[tex](\sqrt{u})'=\dfrac{u'}{2\sqrt{u}}[/tex]

Donc

pour x>0

[tex]f'(x)=\dfrac{\frac{4}{9}}{2\sqrt{\frac{4x}{9}}}\\\\=\dfrac{2}{9}*\sqrt{\dfrac{9}{4x}}\\\\=\dfrac{2*3}{9*2}*\dfrac1{\sqrt{x}}\\\\=\dfrac1{3\sqrt{x}}[/tex]

Merci