Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Découvrez une mine de connaissances d'experts dans différentes disciplines sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour j'ai besoin d'aide pour traiter un problème de mathématiques alors voilà le sujet ​

Bonjour Jai Besoin Daide Pour Traiter Un Problème De Mathématiques Alors Voilà Le Sujet class=

Sagot :

Réponse :

A)

1) montrer que pour tout x , f(x) = - 1/2) x² + 2

f(0) = c = 2

f(- 2) = 4 a - 2 b + 2 = 0

f(2)   = 4 a + 2 b + 2 = 0

      .......................................

           8 a  + 4  = 0   ⇔  8 a = - 4  ⇔ a = - 4/8  ⇔ a = - 1/2

4 * (- 1/2) - 2 b + 2 = 0    ⇔ - 2 - 2 b + 2 = 0  ⇔ - 2 b = 0  ⇔ b = 0

donc  pour tout  x  f(x) = a x² + b x + c   où  a = - 1/2 ; b = 0  et c = 2

devient  f(x) = - 1/2) x² + 2

2) résoudre dans R, l'inéquation  f(x) > 0

f(x) > 0  ⇔ - 1/2) x² + 2 > 0   ⇔ - x² + 4 > 0  ⇔ 4 - x² > 0

       x  - ∞             - 2                2               + ∞

     f(x)            -        0        +      0        -

l'ensemble des solutions de l'inéquation  f(x) > 0  est :  S = ]- 2 ; 2[

B)   g(x) = (- x² + x - 4)/x

1) Dg = R* = ]- ∞ ; 0[U]0 ; + ∞[

2) déterminer les limites aux bornes de Dg  et en déduire une équation de l'asymptote verticale à la courbe (C)

lim f(x)  = (- x² + x - 4)/x  = ∞/∞   F.I

x→ - ∞

(- x² + x - 4)/x  =  x( - x + 1 - 4/x)/x =  - x + 1 - 4/x

lim - x + 1 = + ∞  et  lim -4/x = 0   donc par addition   lim f =  + ∞

x→ - ∞                      x→ - ∞                                             x→ - ∞

lim f(x)  =  

x→ + ∞

lim - x + 1 = - ∞  et  lim -4/x = 0   donc par addition   lim f =  - ∞

x→ + ∞                      x→ + ∞                                             x→ + ∞

lim f(x)  = + ∞    et   lim f(x) = - ∞

x → 0                       x → 0  

x < 0                        x > 0

x = 0 étant l'asymptote verticale  qui est l'axe des ordonnées

3) montrer que g '(x) = 2f(x)/x²

g(x) = (- x² + x - 4)/x

- x² + x - 4 est une fonction polynôme dérivable sur Dg

et  x  est dérivable  sur Dg   donc  la fonction quotient  est dérivable sur Dg  et sa dérivée g '(x) = (u/v)' = (u'v - v'u)/v²

u(x) = - x² + x - 4    ⇒  u'(x) = - 2 x + 1

v (x) = x     ⇒ v'(x) = 1

g '(x) = (x(- 2 x + 1) - (- x² + x - 4))/x²

        = (- 2 x² + x + x² - x + 4)/x²

        = (- x² + 4)/x²

        = 2( - x²/2 + 2)/x²

        = 2 f(x)/x²

4) déduire de la question A.2, le sens de variation de g et dresser le tableau de variation

f(x) > 0  sur ]- 2 ; 2[  et x² > 0  et 2 > 0  donc  g est  croissante

et  f(x) < 0  sur ]- ∞ ; - 2[U]2 ; + ∞[  et x² > 0  et 2 > 0  donc  g est  décroissante

         x    - ∞                       - 2                      2                     + ∞

      g(x)   + ∞ →→→→→→→→→ - 10 →→→→→→→→ - 6 →→→→→→→→ - ∞

                     décroissante       croissante        décroissante

5) g(x) = (- x² + x - 4)/x  = a x + b  + c/x

a x² + b x + c)/x       a = - 1  ; b = 1 et  c - 4

donc   g (x) = - x + 1  - 4/x

et en déduire que la droite (D) d'équation  y = - x + 1 est asymptote oblique à (C)

à la question B.2   les limites en - ∞ et + ∞   sont  + ∞ et - ∞  donc la courbe admet une asymptote oblique  y = - x + 1    

         

Explications étape par étape :

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.