Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour est ce que vous pourriez m'aider s'il vous plait c'est pour aujourd'hui, merciii

Bonjour Est Ce Que Vous Pourriez Maider Sil Vous Plait Cest Pour Aujourdhui Merciii class=

Sagot :

Réponse :

1) comparer ces deux moyennes

  soit   m = (a+b)/2   et  g = √ab   et  m² = ((a+b)/2)²  et g = (√ab)²

on écrit   m² - g² = (a+b)²/4  - ab = (a + b)²/4  - 4ab/4 = (a²+2ab+b²-4ab)/4

= (a² - 2ab +b²)/4  = (a - b)²/4    or  (a-b)² > 0 et 4 > 0  donc  (a-b)²/4 > 0

ainsi  on a,  m² - g² > 0  ⇔ m² > g²   donc  m > g    (car  m > 0 et g > 0)

2) f(x) = 1/(x² + 3)

1) montrer que pour tous nombres a et b

      f(b) - f(a) = (a-b)(a+b)/(b²+3)(a²+3)

f(b) - f(a) = 1/(b²+ 3) - 1/(a² + 3)

             = (a²+3)/(b²+3)(a²+3)  - (b²+3)/(b²+3)(a²+3)

             = ((a²+3) - (b²+3))/(b²+3)(a²+3)

             = (a² + 3 - b² - 3)/(b²+3)(a²+3)

             = (a² - b²)/(b²+3)(a²+3)       IDR

             = (a + b)(a - b)/(b²+3)(a²+3)

donc on a bien  f(b) - f(a) = (a + b)(a - b)/(b²+3)(a²+3)

2) en déduire le sens de variation de la fonction f sur [0 ; + ∞[  puis sur

]-∞ ; 0]

sur [0 ; + ∞[   on  a   0 < a < b   donc f(b) - f(a) < 0  donc  f est décroissante sur [0 ; + ∞[

sur ]- ∞ ; 0]  on a   a < b < 0   ⇒ f(b) - f(a) > 0  donc  f est décroissante sur

]- ∞ ; 0]

Explications étape par étape :

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.