Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour j'ai besoin d'aide pour un exercice en maths en première sur les fonctions exponentielles.

Bonjour Jai Besoin Daide Pour Un Exercice En Maths En Première Sur Les Fonctions Exponentielles class=

Sagot :

Réponse :

Explications étape par étape :

je suppose que tu sais faire la question 2 (utilise un tableur)

Pour la question 3, il suffit de remarquer que [tex]\frac{n}{n!} = \frac{1 }{(n-1)!}[/tex]

puisque n ! = 1 × 2 × 3 … × (n - 1) × n = (n - 1) ! × n

Donc la dérivée de  [tex]\Sigma(1+ \frac{x}{1!}+. . . +\frac{x^n}{n!} + . . . )[/tex] est [tex]\Sigma( \frac{1}{1!}+. . . +\frac{nx^{n-1}}{n!} + . . . )[/tex]

Or 1 ! = 1  donc [tex]\Sigma( \frac{1}{1!}+. . . +\frac{nx^{n-1}}{n!} + . . . )=\Sigma( {1+ . . +\frac{x^{n-1}}{(n-1)!} + . . . )[/tex] donc la dérivée de exp(x) est exp(x)

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.