Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

salut je suis coincée dans la question 1)c)
aidez moi slv
montrez comment faire slv
et merci d'avance ​


Salut Je Suis Coincée Dans La Question 1c Aidez Moi Slv Montrez Comment Faire Slv Et Merci Davance class=

Sagot :

Tenurf

Bonjour,

1)a)

[tex]|z_a|=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \\z_a=2\sqrt{2} \left(\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}i \right)=2\sqrt{2}e^{i\dfrac{\pi}{4}}[/tex]

[tex]|z_B|=1\\\\z_B=e^{-i\dfrac{\pi}{3}}[/tex]

[tex]z_M=z_A*z_B=2\sqrt{2}e^{i\dfrac{\pi}{4}} * e^{-i\dfrac{\pi}{3}}\\\\=2\sqrt{2}e^{i\left(\dfrac{\pi}{4}-\dfrac{\pi}{3}\right)}\\\\=2\sqrt{2}e^{-i\dfrac{\pi}{12}}[/tex]

ce qui s'écrit aussi

[tex]z_M=2\sqrt{2}*\left(\cos(-\dfrac{\pi}{12})+i \sin(-\dfrac{\pi}{12})\right)[/tex]

b) voir figure en piece jointe.

c) Déja nous avons

[tex]OA=|z_A|=|z_M|=OM[/tex]

Ensuite l'angle MOA est de mesure

[tex]arg(z_A)-arg(z_M) = \dfrac{\pi}{4}-(-\dfrac{\pi}{12})\\ \\=\dfrac{3+1}{12}\pi\\\\=\dfrac{\pi}{3}[/tex]

Il s'agit donc d'un triangle isocèle qui a un angle de 60 degre.

Si un triangle possède un angle qui mesure 60° et que deux de ses côtés sont égaux, alors ce triangle sera équilatéral.

Pour construire le point M nous savons qu il est sur le cercle de centre O et passant par A et sur le cercle de centre A et passant par O, car OA=OM=AM.

2)a) Effectuons la multiplication

[tex]z_M=(2+2i)(\dfrac{1}{2}-\dfrac{\sqrt{3}}{2}i)\\\\=(1+\sqrt{3})+(1-\sqrt{3})i[/tex]

b)

Et c'est égal à

[tex]z_M=2\sqrt{2}*\left(\cos(-\dfrac{\pi}{12})+i \sin(-\dfrac{\pi}{12})\right)\\[/tex]

De ce fait

[tex]2\sqrt{2}*\cos(-\dfrac{\pi}{12})=1+\sqrt{3}\\\\\2\sqrt{2}*sin(-\dfrac{\pi}{12}) = 1-\sqrt{3}[/tex]

Ce qui donne

[tex]\cos(-\dfrac{\pi}{12})=\dfrac{1+\sqrt{3}}{2\sqrt{2}}\\\\=\dfrac{\sqrt{2}+\sqrt{3}\sqrt{2}}{2*2}\\ \\ =\dfrac{\sqrt{2}+\sqrt{6}}{4}\\ \\\sin(-\dfrac{\pi}{12})=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\\\\=\dfrac{\sqrt{2}-\sqrt{3}\sqrt{2}}{2*2}\\ \\ =\dfrac{\sqrt{2}-\sqrt{6}}{4}[/tex]

Ce n'est pas demandé mais nous savons que

[tex]\cos(-\dfrac{\pi}{12})=\cos(\dfrac{\pi}{12})\\ \\\sin(-\dfrac{\pi}{12})=-\sin(\dfrac{\pi}{12})[/tex]

donc

[tex]\boxed{\cos(\dfrac{\pi}{12})=\dfrac{\sqrt{6}+\sqrt{2}}{4} }\\ \\\ \boxed{sin(\dfrac{\pi}{12})=\dfrac{\sqrt{6}-\sqrt{2}}{4}}[/tex]

Merci

View image Tenurf
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.