Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Démontrer par récurrence que

1² +2²+ 3² +...+ n² =n(n+1)(2n+1) 6


Démontrer Par Récurrence Que 1 2 3 N Nn12n1 6 class=

Sagot :

Tenurf

Bonjour,

Nous allons montrer par récurrence que la proposition suivante est vraie

[tex]\forall n \in \mathbb{N}^*, \displaystyle \sum_{p=1}^n p^2=\dfrac{n(n+1)(2n+1)}{6}[/tex]

Initialisation

c'est vrai pour n = 1, car

[tex]1^2=1=\dfrac{1*2*3}{6}=1[/tex]

Hérédité

Soit k un entier non nul

Supposons que

[tex]\displaystyle \sum_{p=1}^k p^2=\dfrac{k(k+1)(2k+1)}{6}[/tex]

Et montrons que cela reste vraie au rang k+1

[tex]\displaystyle \sum_{p=1}^{k+1} p^2=\sum_{p=1}^{k} p^2+(k+1)^2\\\\=\dfrac{k(k+1)(2k+1)}{6}+(k+1)^2[/tex]

en utilisant l'hypothèse de récurrence et ensuite cela donne

[tex]\displaystyle \sum_{p=1}^{k+1} p^2=\dfrac{k(k+1)(2k+1)}{6}+(k+1)^2\\\\=(k+1)*\dfrac{k(2k+1)+6(k+1)}{6}\\\\=(k+1)*\dfrac{2k^2+7k+6}{6}\\\\=\dfrac{(k+1)(k+2)(2k+3)}{6}[/tex]

car [tex](k+2)(2k+3)=2k^2+7k+6[/tex]

D'où le résultat

Conclusion

Nous venons de démontrer par récurrence que pour tout n entier non nul

[tex]\displaystyle \sum_{p=1}^n p^2=\dfrac{n(n+1)(2n+1)}{6}[/tex]

Merci

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.