Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour On dispose des cartes ci-contre. On les retourne, on mélange le jeu et on tire une carte au hasard.
On définit les évènements suivants.
A: « La carte tirée est noire.»
B: «La carte tirée est un as.»
1. Calculer les probabilités des évènements A, B et C.
2. a. Les évènements B et C peuvent-ils se réaliser en même temps?
b. On note «B ou C»l'évènement
«La carte tirée est un as ou une
carte rouge ».
Calculer la probabilité de cet événement, notée P(B ou C), de
deux façons
différentes.
3. a. Les évènements A et B peuvent-ils se réaliser en même temps?
b. Calculer P(A ou B) et comparer le résultat avec P(A) + P(B).
4. Quand deux évènements ne peuvent pas se réaliser en même temps,
on dit qu'ils sont « incompatibles ».
À l'aide des questions précédentes, formuler une propriété faisant
intervenir les probabilités de deux évènements incompatibles.
5. a. On considère l'évènement D: « La carte tirée n'est pas un as».
Calculer sa probabilité de deux façons différentes.
Activité
4
C:«La carte tirée est rouge.»
b. On dit que D est l'évènement contraire de l'évènement B et on le note B.
Décrire par une phrase les évènements A et C, puis calculer leurs probabilités.
c. À partir des exemples précédents, formuler une propriété
faisant intervenir
la probabilité d'un évènement et celle de son
évènement contraire.
Chapitre 10 Probabilités
171


Sagot :

Réponse:

D'accord, reprenons avec des calculs plus simples.

1. Calcul des probabilités :

- \( P(A) \) : Probabilité que la carte tirée soit noire.

\( P(A) = \frac{26}{52} = 0.5 \)

- \( P(B) \) : Probabilité que la carte tirée soit un as.

\( P(B) = \frac{4}{52} = 0.077 \)

- \( P(C) \) : Probabilité que la carte tirée soit rouge.

\( P(C) = \frac{26}{52} = 0.5 \)

2.

a. Les événements B et C ne peuvent pas se réaliser en même temps car un as est toujours noir.

b. \( P(B \text{ ou } C) = P(B) + P(C) \)

\( P(B \text{ ou } C) = 0.077 + 0.5 = 0.577 \)

3.

a. Les événements A et B peuvent se réaliser en même temps car il y a des as noirs.

b. \( P(A \text{ ou } B) = P(A) + P(B) - P(A \text{ et } B) \)

\( P(A \text{ ou } B) = 0.5 + 0.077 - 0.038 = 0.539 \)

4. Propriété : Si deux événements sont incompatibles, leur probabilité de se réaliser en même temps est nulle.

5.

a. \( P(D) = 1 - P(B) = 1 - 0.077 = 0.923 \)

b. \( P(A) = 1 - P(C) = 1 - 0.5 = 0.5 \)

c. Propriété : La somme des probabilités d'un événement et de son événement contraire est égale à 1. \( P(E) + P(\text{non } E) = 1 \).

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.