Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

je trouve pas la réponse en appliquant 2 fois TAF

Je Trouve Pas La Réponse En Appliquant 2 Fois TAF class=

Sagot :

Naylo

Réponse :

Explications étape par étape :

Bonjour, j'ai refait l'exercice en entier au cas ou , (excusez ma mauvais ecriture ) et n'hésitez pas si vous avez des questions.

View image Naylo
View image Naylo
View image Naylo
View image Naylo

Bonjour,

[tex] \\ \\ [/tex]

Tu trouveras ma réponse dans les pièces jointes ci-dessous.

[tex] \\ [/tex]

Je le rappelle dans mes explications, mais la résolution de cet exercice repose principalement sur deux théorèmes qui sont les suivants:

[tex] \\ [/tex]

Tout d'abord, le théorème de la bijection:

[tex] \begin{gathered}\begin{gathered} \\ \boxed { \begin{array}{c c} \\  \star \: \boxed{ \sf Th\acute{e}or\grave{e}me \ de \ la \ bijection} \\ \\ \sf - \ Si \ f \ est \ une \ fonction \ d\acute{e}finie\ et \ continue \ sur \ un \ intervalle \ I \ dans \ \mathbb{R}\\ \sf -  \ Si \ f \ est \ strictement \ monotone \ sur \ I \\ \\ \boxed{\sf Alors \ f \ r\acute{e}alise \ une \ bijection \ de \ I \ vers \ f(I).}\end{array}}\\\end{gathered} \end{gathered} [/tex]

[tex] \\ [/tex]

Puis le théorème des accroissements finis:

[tex]\begin{gathered}\begin{gathered} \\ \boxed { \begin{array}{c c} \\ \star \: \boxed{ \sf Th\acute{e}or\grave{e}me \ des \ accroissements \ finis \ (TAF)} \\ \\ \sf - \ Si \ f \ est \ continue \ sur \ un \ segment \ [a ; b] \ (a < b) \\ \sf - \ Si \ f \ est \ d\acute{e}rivable \ sur \ ]a ; b[ \\ \\ \boxed{\sf Alors \ \exists h \in ]a ; b[ \ tel \ que \ f'(h) = \dfrac{f(b) - f(a)}{b - a}}\end{array}}\\\end{gathered} \end{gathered}[/tex]

[tex] \\ \\ [/tex]

Il se peut que certaines coquilles aient fait leur apparition au cours de la rédaction. Si c'est le cas, n'hésite pas à me le faire savoir.

View image Hepinox
View image Hepinox
View image Hepinox
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.