Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

ALGEBRES LINEAIRES

 

calculer x1, x2, x3, x4 et x5 dans les suites suivantes :

a) x0 = 0; x1 = 1; xn = xn-1 + 2x-n2;

b) x0 = 1; x1 = 1; xn = xn-1 + x-n2;

 

le plus important ce que je n'arrive pas à faire :

 

Résoudre ces relation de récurrence i.e. trouver toutes les suites xn = f(n) qui satisfont ces relations.



Sagot :

a)x0=0

x1=1

x2=1+2*0=1

x3=1+2*1=3

x4=3+2*1=5

x5=5+2*3=11

 

xn=x(n-1)+2*x(n-2)

xn-x(n-1)-2*(x-2)=0

r^2-r-2=0

∆=1+8=9

r1=(1+3)/2=2

r2=(1-3)/2=-1

 

xn=a*(2^n)+b(-1)^n

x0=0

0=a+b==> a=-b

x1=1

1=a*2-b=-3b

b=(-1/3)

a=1/3

xn=(1/3)*(2^n)-(1/3)*(-1)^n

 

b)x0=1

x1=1

xn=x(n-1)+x(n-2)

xn-x(n-1)-x(n-2)=0

r^2-r-1=0

∆=1+4=5

r1=(1+√5)/2

r2=(1-√5)/2

xn=a(r1)^n+b(r2)^n

x0=1

a+b=1 ==> b=1-a

x1=1=a(1+√5)/2+b(1-√5)/2

a=(√5+5)/10

b=(5-√5)/5

xn=((√5+5))/10*(1+√5)/2)^n+((5-√5)/5)*(1-√5)/2)^n

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.