Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Une urne contient 5 boules indiscernables au toucher : deux bleues "B" et trois rouge "R".  On dispose également de deux sacs contenant des jetons : l'un est bleu et contient un jeton bleu "b" et trois jetons rouges "r", l'autre est rouge et contient deux jetons bleus "b" et deux jetons rouge "r". On extrait une boule de l'urne, puis on tire un jeton dans le sac qui est de la même couleur que la boule tirée. 
1) Combien y a-t-il d'issues possibles ?

2) A l'aide d'un arbre pondéré, détermine la probabilité de chacune de ses issues.

3) Détermine la probabilité d'événement A: "la boule et le jeton extraits sont de la meme couleurs" 



Sagot :

1) Il y a 4 issues possibles : Bb, Br, Rb, Rr.

 

2) Je ne peux pas dessiner d'arbre, donc je fait directement les caculs.

Établissons d'abord les probabilités primaires : 

P(B) = 2/5

P(R) = 3/5

P(b(sac bleu)) = 1/4

P(b(sac rouge)) = 2/4

P(r(sac bleu)) =  3/4

P(r(sac rouge) = 2/4

P(Bb) = P(B et b) = P(B) * P(b(sac bleu). = 2/20 = 1/10

P(Br) = P(B et r) = P(B) * P(r(sac bleu)) = 6/20 = 3/10

P(Rr) = P(R et r) = P(R) * P(r(sac rouge)) = 6/20 = 3/10

P(Rb) = P(R et b) = P(R) * P(b(sac rouge)) = 6/20 = 3/10

 

3)P(A) = P(Bb OU Rr) = P(Bb) + P(Rr) = 4/10 = 2/5

 

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.