Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Bonsoir, j'ai un exercice de trigonométrie (en première S) à faire mais je n'y arrive pas. Voici l'énoncé :

1. Déterminer cos(3x) en fonction de cos(x)

2. Soit f la fonction définie sur IR par f(x) = 4x^3 - 3x.

Démontrer que l'équation f(x) = 1/2 a dans IR trois solutions.

Voilà, merci beaucoup.



Sagot :

1) cos(3x) = cos(2x)cos(x) - sin(2x)sin(x)

                   = (2cos²(x) - 1)cos(x) - 2sin(x)cos(x)cos(x)

                   = 2cos^3(x) - cos(x) - 2cos(x)(1 - cos²(x))

                   = 2 cos^3(x) - 3 cos(x) + 2cos^3(x)

                   = 4cos^3(x) - 3 cos(x)

 

2) f(x) = 4(cos(y))^3 - 3cos(y) = cos(3y)

    avec x = cos(y) et y € [-pi pi]

          f(x) = 1/2 donne cos(3y) = 1/2

          3y = pi/3 + 2k pi ou 3y = -pi/3 + 2k' pi

          y = pi/9 + 2k pi/3 ou y = -pi/9 + 2k pi/3

          k € {1;2;3}

   x = cos(y)

        x = cos(pi/9) ou x = cos(7pi/9) ou x = cos(13pi/9)

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.