Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Réponse :
Bonjour
Explications étape par étape
1)
Je suppose que tu as su construire tes 2 carrés.
AM=x
Donc :
Aire AMNP=côté x côté= x²
MB=6-x
Donc :
Aire MBQR=(x-6)²=x²-12x+36
Donc :
A(x)=x²+x²-12x+36
A(x)=2x²-12x+36
2)
Tu rentres ta fonction Y1=2x²-12x+36 dans ta calculatrice avec :
DebTable=0
PasTable=1
Tu fais défiler les valeurs et tu écris :
On conjecture que le minimum est atteint pour x=3.
3)
Je ne sais pas ce que tu as vu en cours !!
Je te propose une méthode qui n'est peut-être pas celle qui est atendue par ton prof.
A(3)=2*(3)²-12*(3)+36=18
A(x)-A(3)=2x²-12x+36-18=2x²-12x+18=2(x²-6x+9)=2(x²-6x+3²)
Donc :
A(x)-A(3)=2(x-3)²
(x-3)² est toujours positif car c'est un carré ou nul pour x=3 et 2 aussi est positif.
Donc :
A(x)-A(3) ≥ 0
A(x) ≥ A(3)
A(x) ≥ 18
A(x) a donc pour minimum 18 cm² obtenu pour x=3.
J'ai une autre méthode :
A(x)=2x²-12x+36
A(x)=2(x²-6x+18)
Mais( x²-6x) est le début du développement de (x-3)².
(x-3)²=x²-6x+9
Donc :
x²-6x=(x-3)²-9
Donc :
A(x)=2[(x-3)²-9+18]
A(x)=2[(x-3)²+9]
A(x)=2(x-3)²+18
A(x)-18=2(x-3)²
(x-3)² est toujours positif car c'est un carré ou nul pour x=3 et 2 aussi est positif.
Donc :
A(x)-18 ≥ 0
Etc.
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.