Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Bonjour,
Cela fait maintenant quelques temps que je suis dessus mais je ne comprends pas du tout comment on fait pour résoudre ces questions

Dans le repère (A, AB, AC) on donne les coordonnées des points suivants : A(0;0) B(1;0) C(0;1) S (0;1/3)R(-1/3;0)
1) Calculer les coordonnées du point T
2) Montrer que les coordonnées du vecteur ST sont (2/5; 4/15)
3) Montrer que les vecteurs ST et SR sont colinéaires puis conclure.​​


Bonjour Cela Fait Maintenant Quelques Temps Que Je Suis Dessus Mais Je Ne Comprends Pas Du Tout Comment On Fait Pour Résoudre Ces QuestionsDans Le Repère A AB A class=

Sagot :

Mozi

Bonjour,

Attention R(-1/2; 0) et non pas (-1/3 ; 0) comme dans l'énoncé!

1)

Soient les points:

- Tx le projeté de T sur (AB) parallèlement à (AC)

- Ty le projeté de T sur (AC) parallèlement à (AB)

On a (TTx) // (AC).

D'après le Th. de Thalès:

BT/BC = BTx/BA

Donc BTx = BT/BC * BA = 3/5 BA

Donc Vecteur (BTx) = 3/5 Vecteur (BA)

On démontre de même que CTy = 2/5 CA (vecteurs)

De BTx = 3/5 BA on peut déduire que ATx = 2/5 AB

et de CTy = 2/5 CA on peut déduire que ATy = 3/5 AC

Or AT = ATx + ATy (les vecteurs) car TyTTxA est un parallèlogramme.

On en déduit que AT = 2/5 AB + 3/5 AC

donc T(2/5 ; 3/5)

2) on  ST(2/5 - 0 ; 3/5 - 1/3) ou encore ST(2/5 ; 4/15)

3)

On a S(0 ; 1/3)  et R(-1/2; 0) donc SR(-1/2; -1/3)

donc det(SR;ST) = -1/2 * 4/15 + 1/3 * 2/5 = -4/30 + 2/15 = 0

SR et ST sont donc colinéaires  les point R, S et T sont donc alignés.

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.